Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731800

RESUMEN

Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.


Asunto(s)
Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Enfermedades Neurodegenerativas , Oxígeno , Enfermedad de Parkinson , Humanos , Oxígeno/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003611

RESUMEN

Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.


Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Humanos , Dimerización , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Receptores de Serotonina/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Transducción de Señal
3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569663

RESUMEN

Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 ("young" astrocyte group) and 150 ("old" astrocyte group) of cultures' development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in "old" astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of "young" astrocytes rather than that of "old" ones.


Asunto(s)
Astrocitos , Calcio/metabolismo , Astrocitos/metabolismo , Hipoxia de la Célula , Senescencia Celular , Células Cultivadas , Señalización del Calcio , Ratones Endogámicos C57BL , Animales , Ratones
4.
Neurol Int ; 15(3): 778-791, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37489355

RESUMEN

Sleep-wake cycle disorders most often accompany the elderly and are frequently associated with the development of neurodegenerative processes, primarily Alzheimer's disease. Sleep disturbances can be diagnosed in patients with AD even before the onset of memory and cognitive impairment, and become more pronounced as the disease progresses. Therefore, the expansion of our knowledge of how sleep relates to AD pathogenesis needs to be addressed as soon as possible. Here, we investigated the influence of chronic sleep deprivation on the motor and orienting-exploratory activity of 5xFAD mice, as well as their spatial learning ability and long-term memory retention. The studies carried out revealed that chronic sleep deprivation negatively affects the processes of spatial memory reconsolidation in 5xFAD mice. This leads to the development of stress-related behavioral responses, including aggressive behavior. In addition, the morphological changes in the cerebral cortex, including changes in the nuclear-cytoplasmic ratio and degradation of neuronal processes are observed. Moreover, we found an increase in the level of total DNA methylation in the blood of the sleep-deprived mice, which may be one of the mechanisms of the two-way relationship between sleep and neurodegeneration.

5.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555569

RESUMEN

Accumulated experimental data strongly suggest that astrocytes play an important role in the pathogenesis of neurodegeneration, including Alzheimer's disease (AD). The effect of astrocytes on the calcium activity of neuron-astroglia networks in AD modelling was the object of the present study. We have expanded and improved our approach's capabilities to analyze calcium activity. We have developed a novel algorithm to construct dynamic directed graphs of both astrocytic and neuronal networks. The proposed algorithm allows us not only to identify functional relationships between cells and determine the presence of network activity, but also to characterize the spread of the calcium signal from cell to cell. Our study showed that Alzheimer's astrocytes can change the functional pattern of the calcium activity of healthy nerve cells. When healthy nerve cells were cocultivated with astrocytes treated with Aß42, activation of calcium signaling was found. When healthy nerve cells were cocultivated with 5xFAD astrocytes, inhibition of calcium signaling was observed. In this regard, it seems relevant to further study astrocytic-neuronal interactions as an important factor in the regulation of the functional activity of brain cells during neurodegenerative processes. The approach to the analysis of streaming imaging data developed by the authors is a promising tool for studying the collective calcium dynamics of nerve cells.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Calcio/farmacología , Astrocitos , Calcio de la Dieta/farmacología , Neuronas
6.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077134

RESUMEN

Currently, the role of the neurotrophic factors BDNF and GDNF in maintaining the brain's resistance to the damaging effects of hypoxia and functional recovery of neural networks after exposure to damaging factors are actively studied. The assessment of the effect of an increase in the level of these neurotrophic factors in brain tissues using genetic engineering methods on the resistance of laboratory animals to hypoxia may pave the way for the future clinical use of neurotrophic factors BDNF and GDNF in the treatment of hypoxic damage. This study aimed to evaluate the antihypoxic and neuroprotective properties of BDNF and GDNF expression level increase using adeno-associated viral vectors in modeling hypoxia in vivo. To achieve overexpression of neurotrophic factors in the central nervous system's cells, viral constructs were injected into the brain ventricles of newborn male C57Bl6 (P0) mice. Acute hypobaric hypoxia was modeled on the 30th day after the injection of viral vectors. Survival, cognitive, and mnestic functions in the late post-hypoxic period were tested. Evaluation of growth and weight characteristics and the neurological status of animals showed that the overexpression of neurotrophic factors does not affect the development of mice. It was found that the use of adeno-associated viral vectors increased the survival rate of male mice under hypoxic conditions. The present study indicates that the neurotrophic factors' overexpression, induced by the specially developed viral constructs carrying the BDNF and GDNF genes, is a prospective neuroprotection method, increasing the survival rate of animals after hypoxic injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial , Hipoxia/metabolismo , Neuroprotección , Animales , Encéfalo/metabolismo , Células Cultivadas , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipoxia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Estudios Prospectivos
7.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054920

RESUMEN

Ischemic brain injury is a widespread pathological condition, the main components of which are a deficiency of oxygen and energy substrates. In recent years, a number of new forms of cell death, including necroptosis, have been described. In necroptosis, a cascade of interactions between the kinases RIPK1 and RIPK3 and the MLKL protein leads to the formation of a specialized death complex called the necrosome, which triggers MLKL-mediated destruction of the cell membrane and necroptotic cell death. Necroptosis probably plays an important role in the development of ischemia/reperfusion injury and can be considered as a potential target for finding methods to correct the disruption of neural networks in ischemic damage. In the present study, we demonstrated that blockade of RIPK1 kinase by Necrostatin-1 preserved the viability of cells in primary hippocampal cultures in an in vitro model of glucose deprivation. The effect of RIPK1 blockade on the bioelectrical and metabolic calcium activity of neuron-glial networks in vitro using calcium imaging and multi-electrode arrays was assessed for the first time. RIPK1 blockade was shown to partially preserve both calcium and bioelectric activity of neuron-glial networks under ischemic factors. However, it should be noted that RIPK1 blockade does not preserve the network parameters of the collective calcium dynamics of neuron-glial networks, despite the maintenance of network bioelectrical activity (the number of bursts and the number of spikes in the bursts). To confirm the data obtained in vitro, we studied the effect of RIPK1 blockade on the resistance of small laboratory animals to in vivo modeling of hypoxia and cerebral ischemia. The use of Necrostatin-1 increases the survival rate of C57BL mice in modeling both acute hypobaric hypoxia and ischemic brain damage.


Asunto(s)
Hipoxia/genética , Hipoxia/metabolismo , Isquemia/metabolismo , Necroptosis/genética , Neuronas/metabolismo , Neuroprotección/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunofenotipificación , Isquemia/diagnóstico , Isquemia/etiología , Isquemia/mortalidad , Imagen por Resonancia Magnética , Ratones , Pronóstico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Tasa de Supervivencia
8.
Front Aging Neurosci ; 14: 1016053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36778591

RESUMEN

In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.

9.
Front Cell Dev Biol ; 9: 703084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395432

RESUMEN

Hypoxia is one of the most common pathological conditions, which can be induced by multiple events, including ischemic injury, trauma, inflammation, tumors, etc. The body's adaptation to hypoxia is a highly important phenomenon in both health and disease. Most cellular responses to hypoxia are associated with a family of transcription factors called hypoxia-inducible factors (HIFs), which induce the expression of a wide range of genes that help cells adapt to a hypoxic environment. Basic mechanisms of adaptation to hypoxia, and particularly HIF functions, have being extensively studied over recent decades, leading to the 2019 Nobel Prize in Physiology or Medicine. Based on their pivotal physiological importance, HIFs are attracting increasing attention as a new potential target for treating a large number of hypoxia-associated diseases. Most of the experimental work related to HIFs has focused on roles in the liver and kidney. However, increasing evidence clearly demonstrates that HIF-based responses represent an universal adaptation mechanism in all tissue types, including the central nervous system (CNS). In the CNS, HIFs are critically involved in the regulation of neurogenesis, nerve cell differentiation, and neuronal apoptosis. In this mini-review, we provide an overview of the complex role of HIF-1 in the adaptation of neurons and glia cells to hypoxia, with a focus on its potential involvement into various neuronal pathologies and on its possible role as a novel therapeutic target.

10.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672819

RESUMEN

The contribution of many neuronal kinases to the adaptation of nerve cells to ischemic damage and their effect on functional neural network activity has not yet been studied. The aim of this work is to study the role of the four kinases belonging to different metabolic cascades (SRC, Ikkb, eEF2K, and FLT4) in the adaptive potential of the neuron-glial network for modeling the key factors of ischemic damage. We carried out a comprehensive study on the effects of kinases blockade on the viability and network functional calcium activity of nerve cells under ischemic factor modeling in vitro. Ischemic factor modelling was performed on day 14 of culturing primary hippocampal cells obtained from mouse embryos (E18). The most significant neuroprotective effect was shown in the blockade of FLT4 kinase in the simulation of hypoxia. The studies performed revealed the role of FLT4 in the development of functional dysfunction in cerebrovascular accidents and created new opportunities for the study of this enzyme and its blockers in the formation of new therapeutic strategies.


Asunto(s)
Modelos Biológicos , Neuronas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Animales , Hipoxia de la Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Regulación Enzimológica de la Expresión Génica , Hipocampo/citología , Hipocampo/embriología , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Isquemia/metabolismo , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Proteínas Quinasas/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
11.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114758

RESUMEN

Whether and under what conditions astrocytes can mount a collective network response has recently become one of the central questions in neurobiology. Here, we address this problem, investigating astrocytic reactions to different biochemical stimuli and ischemic-like conditions in vitro. Identifying an emergent astrocytic network is based on a novel mathematical approach that extracts calcium activity from time-lapse fluorescence imaging and estimates the connectivity of astrocytes. The developed algorithm represents the astrocytic network as an oriented graph in which the nodes correspond to separate astrocytes, and the edges indicate high dynamical correlations between astrocytic events. We demonstrate that ischemic-like conditions decrease network connectivity in primary cultures in vitro, although calcium events persist. Importantly, we found that stimulation under normal conditions with 10 µM ATP increases the number of long-range connections and the degree of corresponding correlations in calcium activity, apart from the frequency of calcium events. This result indicates that astrocytes can form a large functional network in response to certain stimuli. In the post-ischemic interval, the response to ATP stimulation is not manifested, which suggests a deep lesion in functional astrocytic networks. The blockade of Connexin 43 during ischemic modeling preserves the connectivity of astrocytes in the post-hypoxic period.


Asunto(s)
Adenosina Trifosfato/farmacología , Astrocitos/citología , Isquemia Encefálica/metabolismo , Señalización del Calcio , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Señalización del Calcio/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Conexina 43/metabolismo , Ratones , Modelos Biológicos , Cultivo Primario de Células , Imagen de Lapso de Tiempo
12.
Front Cell Dev Biol ; 8: 582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733889

RESUMEN

Alzheimer's disease (AD) is a widespread chronic neurodegenerative pathology characterized by synaptic dysfunction, partial neuronal death, cognitive decline and memory impairments. The major hallmarks of AD are extracellular senile amyloid plaques formed by various types of amyloid proteins (Aß) and the formation and accumulation of intracellular neurofibrillary tangles. However, there is a lack of relevant experimental models for studying changes in neural network activity, the features of intercellular signaling or the effects of drugs on the functional activity of nervous cells during AD development. In this work, we examined two experimental models of amyloidopathy using primary hippocampal cultures. The first model involves the embryonic brains of 5xFAD mice; the second uses chronic application of amyloid beta 1-42 (Aß1-42). The model based on primary hippocampal cells obtained from 5xFAD mice demonstrated changes in spontaneous network calcium activity characterized by a decrease in the number of cells exhibiting Ca2+ activity, a decrease in the number of Ca2+ oscillations and an increase in the duration of Ca2+ events from day 21 of culture development in vitro. Chronic application of Aß1-42 resulted in the rapid establishment of significant neurodegenerative changes in primary hippocampal cultures, leading to marked impairments in neural network calcium activity and increased cell death. Using this model and multielectrode arrays, we studied the influence of amyloidopathy on spontaneous bioelectrical neural network activity in primary hippocampal cultures. It was shown that chronic Aß application decreased the number of network bursts and spikes in a burst. The spatial structure of neural networks was also disturbed that characterized by reduction in both the number of key network elements (hubs) and connections between network elements. Moreover, application of brain-derived neurotrophic factor (BDNF) recombinant protein and BDNF hyperexpression by an adeno-associated virus vector partially prevented these amyloidopathy-induced neurodegenerative phenomena. BDNF maintained cell viability and spontaneous bioelectrical and calcium network activity in primary hippocampal cultures.

13.
J Biophotonics ; 13(1): e201960077, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31595675

RESUMEN

Photodynamic therapy (PDT) is a clinically approved procedure for targeting tumor cells. Though several different photosensitizers have been developed, there is still much demand for novel photosensitizers with improved properties. In this study we aim to characterize the accumulation, localization and dark cytotoxicity of the novel photosensitizers developed in-house derivatives of porphyrazines (pz I-IV) in primary murine neuronal cells, as well as to identify the concentrations at which pz still effectively induces death in glioma cells yet is nontoxic to nontransformed cells. The study shows that incubation of primary neuronal and glioma cells with pz I-IV leads to their accumulation in both types of cells, but their rates of internalization, subcellular localization and dark toxicity differ significantly. Pz II was the most promising photosensitizer. It efficiently killed glioma cells while remaining nontoxic to primary neuronal cells. This opens up the possibility of evaluating pz II for experimental PDT for glioma.


Asunto(s)
Glioma , Fotoquimioterapia , Animales , Encéfalo , Línea Celular Tumoral , Ratones , Fármacos Fotosensibilizantes/farmacología
14.
J Immunother Cancer ; 7(1): 350, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842994

RESUMEN

BACKGROUND: Anti-cancer therapy is more successful when it can also induce an immunogenic form of cancer cell death (ICD). Therefore, when developing new treatment strategies, it is extremely important to choose methods that induce ICD and thereby activate anti-tumor immune response leading to the most effective destruction of tumor cells. The aim of this work was to analyze whether the clinically widely used photosensitizers, photosens (PS) and photodithazine (PD), can induce ICD when used in photodynamic therapy (PDT). METHODS: Cell death in murine glioma GL261 or fibrosarcoma MCA205 cells was induced by PS- or PD-PDT and cell death was analyzed by MTT or flow cytometry. Intracellular distribution of PS and PD was studied by using the laser scanning microscope. Calreticulin exposure and HMGB1 and ATP release were detected by flow cytometry, ELISA and luminescence assay, respectively. Immunogenicity in vitro was analyzed by co-culturing of dying cancer cells with bone-marrow derived dendritic cells (BMDCs) and rate of phagocytosis and maturation (CD11c+CD86+, CD11c+CD40+) of BMDCs and production of IL-6 in the supernatant were measured. In vivo immunogenicity was analyzed in mouse tumor prophylactic vaccination model. RESULTS: We determined the optimal concentrations of the photosensitizers and found that at a light dose of 20 J/cm2 (λex 615-635 nm) both PS and PD efficiently induced cell death in glioma GL261 and fibrosarcoma MCA205 cells. We demonstrate that PS localized predominantly in the lysosomes and that the cell death induced by PS-PDT was inhibited by zVAD-fmk (apoptosis inhibitor) and by ferrostatin-1 and DFO (ferroptosis inhibitors), but not by the necroptosis inhibitor necrostatin-1 s. By contrast, PD accumulated in the endoplasmic reticulum and Golgi apparatus, and the cell death induced by PD-PDT was inhibited only by z-VAD-fmk. Dying cancer cells induced by PS-PDT or PD-PDT emit calreticulin, HMGB1 and ATP and they were efficiently engulfed by BMDCs, which then matured, became activated and produced IL-6. Using dying cancer cells induced by PS-PDT or PD-PDT, we demonstrate the efficient vaccination potential of ICD in vivo. CONCLUSIONS: Altogether, these results identify PS and PD as novel ICD inducers that could be effectively combined with PDT in cancer therapy.


Asunto(s)
Glucosamina/análogos & derivados , Indoles/farmacología , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Animales , Biomarcadores , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glucosamina/farmacología , Ratones , Fagocitosis/efectos de los fármacos
15.
Front Physiol ; 9: 1925, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687128

RESUMEN

Discovering the mechanisms underlying homeostatic regulation in brain neural network formation and stability processes is one of the most urgent tasks in modern neuroscience. Brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor system have long been considered the main regulators of neuronal survival and differentiation. The elucidation of methods for studying neural network activity makes investigating the complex mechanisms underlying neural network structure reorganization during development and detecting new mechanisms for neuronal activity remodeling possible. In this in vitro study, we investigated the effects of chronic BDNF (the main TrkB stimulator) and ANA-12 (a TrkB receptor system blocker) administration on the formation of neural-glial networks. The formation of spontaneous bioelectrical activity and functional neural structure depend on TrkB receptors, and blocking TrkB receptors inhibits full bioelectrical activity development. Cross-correlation analysis demonstrated the decisive role of TrkB in the formation and "strengths" of activity centers. Even though an appropriate ANA-12 concentration is non-toxic to nerve cells, numerous cells in culture medium containing this reagent do not exhibit metabolic activity and are not functionally involved in signal transmission processes. Electron microscopy studies revealed that chronically influencing the TrkB receptor system significantly alters synaptic and mitochondrial apparatus capture in cells, and functional analysis of mitochondrial activity confirmed these findings. Because knowledge of interactions between TrkB-mediated regulation and the mitochondrial state under normal conditions is rather limited, data on these relationships are particularly interesting and require further investigation. Thus, we assume that the molecular cascades mediated by TrkB actively participate in the formation of functionally complete brain neural networks.

16.
Brain Res ; 1678: 310-321, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106947

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is regarded as a potent neuroprotector and a corrector of neural network activity in stress conditions. This work aimed to investigate the effect of GDNF on primary hippocampal cultures during acute normobaric hypoxia. Hypoxia induction was performed using day 14 in vitro cultures derived from mouse embryos (E18) with the preventive addition of GDNF (1 ng/ml) to the culture medium 10 min before oxygen deprivation. An analysis of spontaneous bioelectrical activity that included defining the internal neural network structure, morphological studies, and viability tests was performed during the post-hypoxic period. This study revealed that GDNF does not influence spontaneous network activity during normoxia but protects cultures from cell death and maintains the network activity during hypoxia. GDNF created unique conditions that supported the viability of cells even in cases of cellular mitochondrial damage. GDNF partially negated the consequences of hypoxia by influencing synaptic plasticity. Intravital mRNA detection identified fewer GluR2 mRNA-positive cells, whereas GDNF preserved the number of these cells in the post-hypoxic period. Activation of the synthesis of GluR2 subunits of AMPA-receptors is one possible mechanism of the neuroprotective action of GDNF.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Hipoxia/patología , Hipoxia/prevención & control , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos , Hipocampo/química , Ratones , Microscopía Electrónica de Transmisión , Red Nerviosa/ultraestructura , Neuronas/patología , Neuronas/ultraestructura , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo
17.
Oxid Med Cell Longev ; 2015: 453901, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075035

RESUMEN

The neuroprotective and antihypoxic effects of brain-derived neurotrophic factor (BDNF) on dissociated hippocampal cultures in a hypoxia model were investigated. These experiments demonstrate that 10 minutes of normobaric hypoxia increased the number of dead cells in primary culture, whereas a preventive application of BDNF increased the number of viable cells. Spontaneous bioelectrical and calcium activity in neural networks was analyzed using multielectrode arrays and functional intravital calcium imaging. The results indicate that BDNF affects the functional parameters of neuronal networks in dissociated hippocampal cultures over the 7-day posthypoxic period. In addition, the effects of k252a, an antagonist of tropomyosin-related kinase B (TrkB), on functional bioelectrical activity during and after acute hypoxia were investigated. It was shown that the protective effects of BDNF are associated with binding to the TrkB receptor. Finally, intravital fluorescent mRNA probes were used to study the role of NF-κB1 in the protective effects of BDNF. Our experiments revealed that BDNF application stimulates NF-κB1 mRNA synthesis in primary dissociated hippocampal cells under normal conditions but not in hypoxic state.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Hipocampo/efectos de los fármacos , Receptor trkB/metabolismo , Animales , Carbazoles/farmacología , Hipoxia de la Célula , Células Cultivadas , Embrión de Mamíferos/citología , Hipocampo/citología , Hipocampo/metabolismo , Alcaloides Indólicos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA